

18TH EAST ASIAN ACTUARIAL CONFERENCE

12-15 October 2014 Taipei International Convention Center in Taipei Taiwan

Mortality Improvement for Some Regions – Methodology and Analysis

18th EAAC Taipei Taiwan October 15, 2014

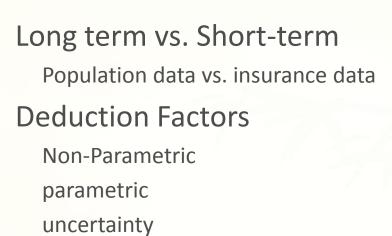
Mortality Improvement Methods

Lee Carter Model

Model fit and Analysis

Result

Result



Applications

- 1. SOA
- 2. CMIB
- 3. Other Actuarial Methods
- 4. Lee-Carter

2014

TAIPEI TAI

SOA Methods

$$q_x^{1994+n} = q_x^{1994} \cdot (1 - AA_x)'$$

This method will have a base rate q¹⁹⁹⁴ and the reduction factor AA_x for each age x.

AA_x was obtained:

- Data Source
 CSRS for age 25-65 for 1987-93
 add SSA for age 1-24 and 60-120 for 1977-93
- Average Trends

Linear Regression of log(m_{x,t}) 5-year age group for data CSRS and SSA for1987-1993 and 1977-1993 respectively

CMIB Methods

 $RF(x,t) = \alpha(x) + [1 - \alpha(x)] \cdot [1 - f_n(x)]^{t/n}$ $q_{x,t} = q_{x,0} \cdot RF(x,t)$

RF(*x*,*t*) - Exponential Decay Characterized by two age-dependent **parameters**. $\alpha(x)$ denotes the value to be asymptotically approached when t ends to infinite, while f_n is the percentage of the total fall (1- $\alpha(x)$) assumed to occur in n years.

Two set of tables 80 and 92 series (1979-82 and 1991-94 experiences, respectively) for annuitants and pensioners.

80 Series - n was fixed at value of 20 and f_{20} at 0.6 for all ages. And $\alpha(x)$ is expressed as:

$$\alpha(x) = \begin{cases} 0.5, & x < 60\\ \frac{x - 10}{100}, & 60 \le x \le 110\\ 1, & x > 110 \end{cases}$$

CMIB Methods

$$RF(x,t) = \alpha(x) + [1 - \alpha(x)] \cdot [1 - f_n(x)]^{t/n}$$
$$q_{x,t} = q_{x,0} \cdot RF(x,t)$$

92 Series - n remained fixed at 20 but $1-f_{20}$ values linearly from 0.45 to 0.71 between ages 60 to 110, below 60 and above 110, constant values with the values already mentioned apply. And $\alpha(x)$ and fn are expressed as the following:

$$\alpha(x) = \begin{cases} 0.13, & x < 60\\ 1 + 0.87 \cdot \frac{x - 110}{50}, & 60 \le x \le 110\\ 1, & x > 110 \end{cases}$$
$$f_{20}(x) = \begin{cases} 0.55, & x < 60\\ \frac{(110 - x) \cdot 0.55 + (x - 60) \cdot 0.29}{50}, & 60 \le x \le 110\\ 0.29, & x > 110 \end{cases}$$

CMIB Methods

2014

Other Actuarial Method:

Determine "Base" rate

Most Recent Mortality Rate

Define Factor

- Ratio of the mortality to the previous year's mortality
- Linear regression

Methods

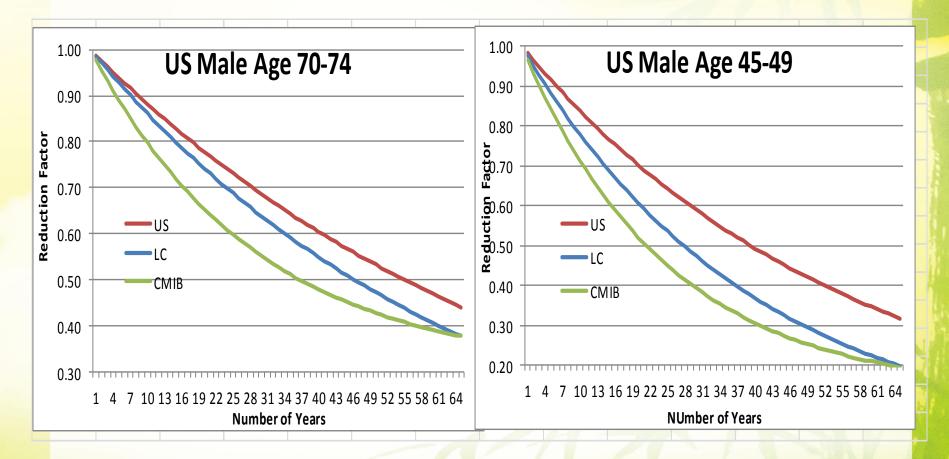
- Arithmetic average
- Mean
- Geometric average
- Weighted average

Lee-Carter's Extrapolating Methodology overview

- Project age pattern and measure uncertainty
- SVD to Solve the age-specific parameters as well as the preliminary mortality index
- ARIMA (0,1,0) a random walk with a drift to project mortality index

Mort Improvement Methods

The reduction factor Comparison for the SOA, CMIB, and LC methodology



Data

Model

Model fit and Analysis

Date Source

Region	CalYr	# of CalYr	ProjPeriod	# of ProjYr
Japan	1947-2012	66	1973-2012	40
Taiwan	1970-2010	41	1970-2010	41
USA	1933-2010	78	1971-2010	40

HMD: Human Mortality Database is a population data that it is administrated by UC Berkley

2014

TAIPEI TAIV

General Model

$$\ln(m_{x,t}) = a_x + b_x \cdot k_t + \varepsilon_{x,t}$$
(1)

Where, $m_{x,t}$ is the central mortality rate for age x for year t; a_x and b_x are parameters dependent only on age x; k_t is factor to be modeled as a time series; and the $\mathcal{E}_{x,t}$ error term, is assumed to have mean zero and standard deviation σ_{ε} .

Lee-Carter Model

Re-Write Model as

$$m_{x,t} = e^{a_x + b_x k_t} \tag{2}$$

Where, e^{a_x} is the general shape across age of the mortality schedule; the b_x profile tells us which rates decline rapidly and which rates decline slowly in response to changes in k_t $\left(\frac{d \ln m_{x,t}}{dt} = b_x \cdot \frac{dk_t}{dt}\right)$

Lee-Carter Model

The model (1) cannot be fitted by simple regression methods; It allows for several solutions.

To deal the above,

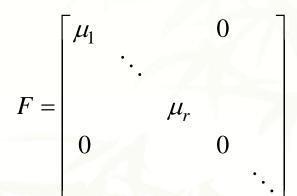
Use SVD, and

 $b_{\rm x}\,and\,k_{\rm t}\,is$ normalized to sum to unity and to zero respectively.

Lee-Carter Model Analysis Lee-Carter

SVD overview

 SVD Let A be order nxm, then there are unitary matrices U and V, of order n and m respectively, such that A=UFV, where F is a rectangular diagonal matrix of order mxn,



- With $F_{ii} = \mu_i$. The numbers μ_i are called the singular values of A. They are all real and positive, and they can be arranged so that $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_r > 0$
- Where r is the rank of the matrix.
- V* is a conjugate transpose.

SVD applied to $ln(m_{x,t})$,

$$\ln(m_{x,t}) = U_{n \times n} F V_{T \times T}$$
(3)

or
$$\ln(m_{x,t}) = \sum_{i=1}^{r} \mu_i \cdot u_i(x) \cdot v_i(t)$$
 (4)

Note that, V (and also U) is real number, so the conjugate transpose V* is equal to the transpose V'.

2014

TAIPEI TAIV

First 10 Singular values

	Male				Female		
SV	Japan	Taiwan	US	SV	Japan	Taiwan	US
μ_1	164.702	151.638	152.214	μ_1	180.280	166.811	167.934
μ_2	3.054	3.759	2.418	μ_2	4.257	2.971	2.012
μ_3	0.832	2.110	0.931	μ_3	0.801	1.518	0.848
μ_4	0.586	1.321	0.718	μ_4	0.452	0.790	0.672
μ_5	0.389	0.792	0.393	μ_5	0.397	0.663	0.352
μ_6	0.365	0.539	0.300	μ_6	0.320	0.533	0.249
μ_7	0.298	0.440	0.219	μ_7	0.285	0.458	0.220
μ_8	0.233	0.354	0.170	μ_8	0.205	0.372	0.174
μ_9	0.202	0.289	0.129	μ_9	0.176	0.333	0.129
μ_{10}	0.178	0.268	0.110	μ_{10}	0.165	0.268	0.102

The first singular value is larger for all three regions

2014

TAIPEI TAIWAN

Use the first singular value component

 $\ln(m_{x,t}) = \mu_1 u_1(x) \cdot v_1(t) + \varepsilon_{x,t}$

The portion of the total temporal variances explained by the first SV component is all over 95% (except for Taiwan), that seemed captured important of data.

Male					Female	
Japan	Taiwan	US	-	Japan	Taiwan	US
0.9596	0.9311	0.9632		0.9587	0.9458	0.9699
0.9774	0.9542	0.9785		0.9814	0.9626	0.9816

(5)

Use one SV (μ_1) and Use two SVs (μ_1 and μ_2) for US Male Age 65-69

Lee-Carter

Model

Model fit for Age 65-69 -3.0 -3.5 -Use 2 SVD -4.0 2010 1930 1940 1950 1960 1970 1980 1990 2000 **Calendar Year**

2014

TAIPEI TAIWAN

SVD to Solve {a_x}, {b_x} and {k_t},

$$\ln(m_{x,t}) \approx A_x B_t = a_x + b_x \cdot k_t$$

$$a_x = \frac{1}{T} \sum_t A_x B_t = A_x \left(\frac{\sum_t B_t}{T}\right)$$

$$k_t = \left(\sum_x A_x\right) \cdot \left(B_t - \frac{\sum_t B_t}{T}\right)$$

$$b_x = \frac{A_x B_t - a_x}{k_t} = \frac{A_x}{\sum_x A_x}$$

2014

(6)

(7)

US Results - {a_x} and {b_x} from equation (7) above, for example,

	a	x	b _x		
Age	Male	Female	Male	Female	
5-9	-7.7223	-8.0189	0.0797	0.0750	
10-14	-7.6368	-8.1008	0.0787	0.0757	
20-24	-6.2366	-7.1491	0.0641	0.0668	
30-34	-6.1041	-6.7085	0.0628	0.0627	
40-44	-5.4378	-5.9529	0.0560	0.0556	
50-54	-4.5814	-5.1329	0.0472	0.0479	
60-64	-3.763 <mark>0</mark>	-4.3153	0.0388	0.0403	
70-74	-2.9779	-3.4321	0.0307	0.0321	
80-84	-2.1463	-2.4754	0.0221	0.0232	
90-94	-1.3603	-1.5505	0.0140	0.0145	

2014

A second stage of estimation of k_t, whereby the k_t's are recalculated from the equation,

$$D(t) = \sum [N(x,t) \cdot \exp(\hat{a}_x + k_t \cdot \hat{b}_x)]$$
 (8)

Taking the estimated $\{a_x\}$ and $\{b_x\}$ as fixed from equation (7).

Note that: there is no closed form solution for equation (8) above. (Newton method is employed)

Take an initial k_{t1} equation along with {a_x} and {b_x} from equation (7) above, the following vector is employed for the Newton's method to obtained the 2nd stage k

Re-write the equation (8) above,

$$F(T) = D(T) - N(X,T)' \cdot e^{a(X) + k(T) \cdot b(X)}$$
(9)

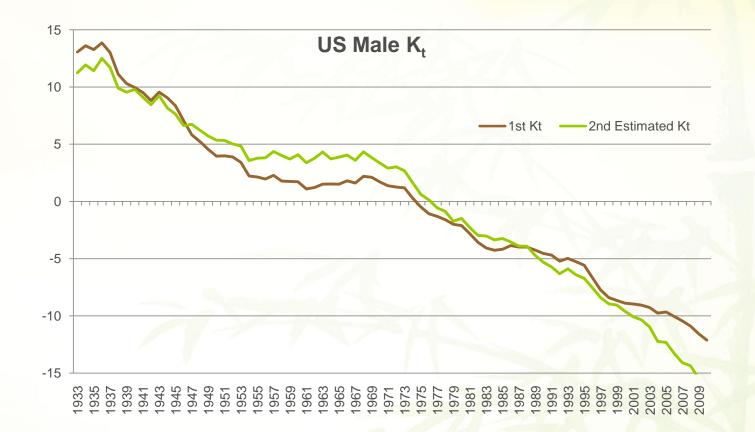
The Jacobian matrix for equation (9) is,

$$J(T) = -N(X,T) \times b(X) \times e^{a(X) + k(T) \times b(X)} \Delta k(T)$$

The first order Taylor series becomes:

 $D(T_i) - N(X, T_i)' \cdot e^{a(X) + k(T_i) \cdot B(X)} + \left(-N(X, T_i) \times b(X) \times e^{a(X) + k(T_{ii}) \times b(X)} \right) \cdot \left(k(T_{i+1}) - k(T_i) \right) \to 0$

US Male K_{t1} and Re-Estimated K_{t1} based on 1933 -2010



Lee-Carter Model

ARIMA(0,1,0) time series model that a random walk with drift is found to be a good fit, for the mortality index k_t, That is,

$$k_t = c + k_{t-1} + u_t \tag{10}$$

the projection of the k_t into the i years from the current year t,

$$k_{t+i} = k_t + iC + \sum_{j=0}^{i-1} u_{t+j}$$
(11)

Equation (11) implies, the quantity for the error term is,

$$\sqrt{\sum_{j=0}^{i-1} u_{t+j}} = \sqrt{i} \cdot \sigma$$

$$k_t - k_{t-1} = C + u_t$$

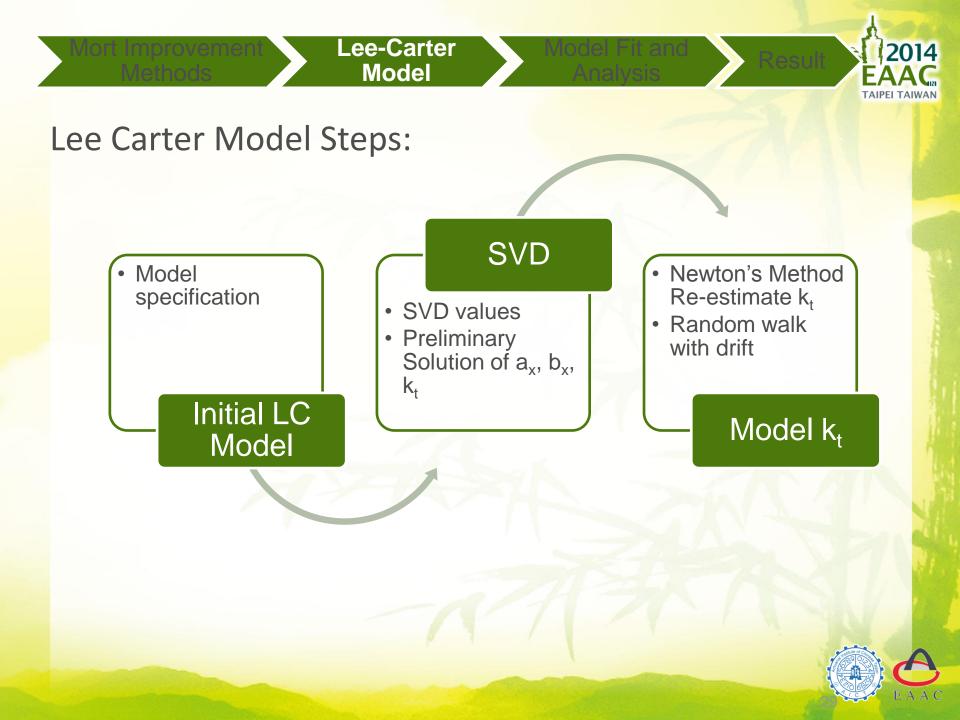
 $k_{t-1} - k_{t-2} = C + u_{t-1}$
:

$$k_{t-(m-1)} - k_{t-m} = C + u_{t-(m-1)}$$

Summing up the above,

$$C \approx \frac{1}{m} \sum_{j=0}^{m-1} (k_{t-j} - k_{t-j-1})$$

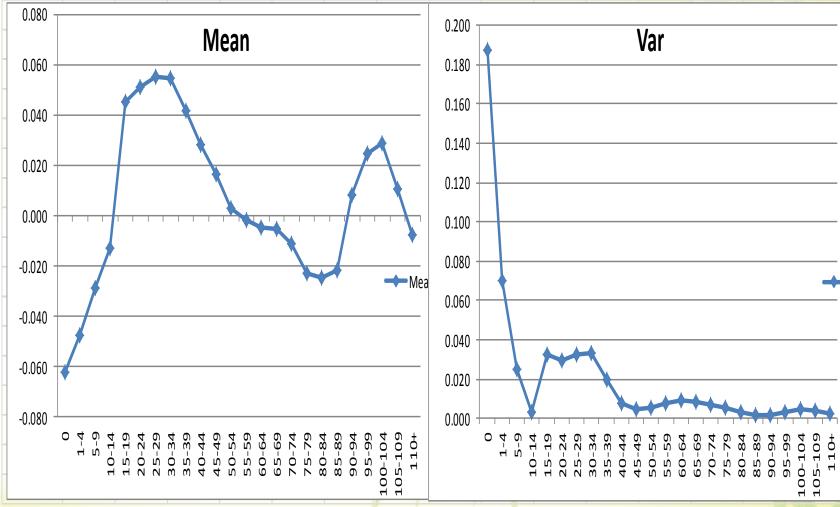
2014

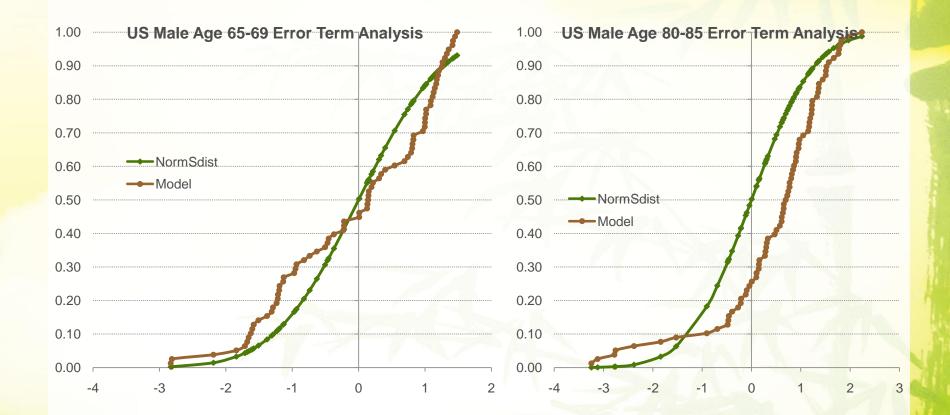


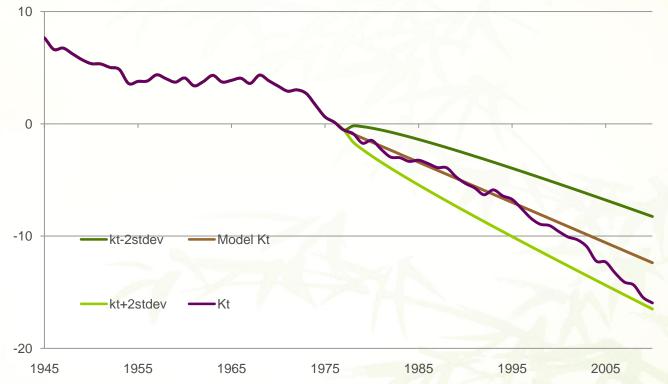
The error Term $\mathcal{E}_{x,t}$ Analysis

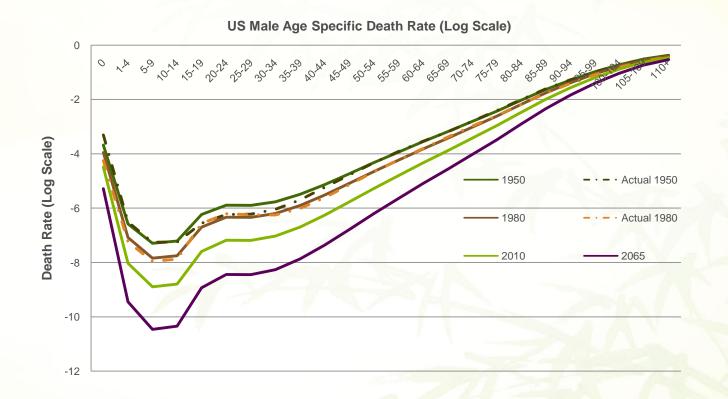
Recall that the error is assumed to follow a normal distribution with mean 0 and standard deviation σ_{ε} . The σ_{ε} should not be too much different across ages.

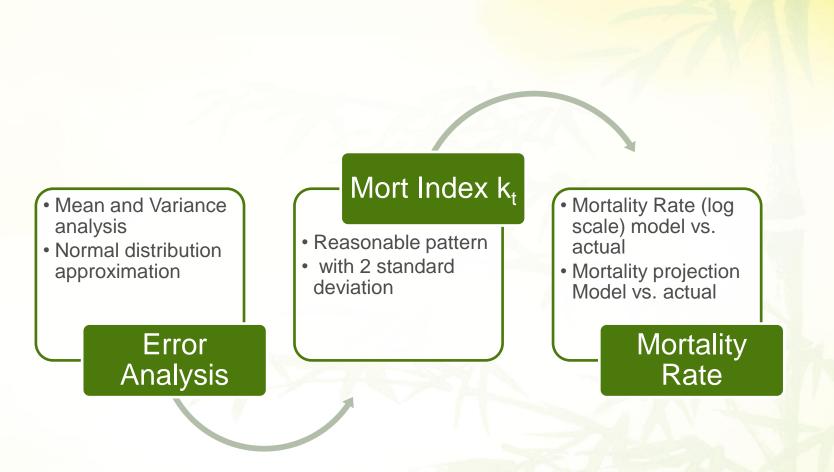
Model Fit and Analysis











Model Fit and Analysis Improvement by Kt

The Re-estimated k_t resulting in higher improvement factor.

Specification

Mortality Improvement by Age and Region Comparison

Specification

Projection period:

Region	ProjPeriod	# of ProjYr
Japan	1973-2012	40
Taiwan	1970-2010	41
USA	1971-2010	40

Use the first Singular Value

Use Re-estimated k

2014

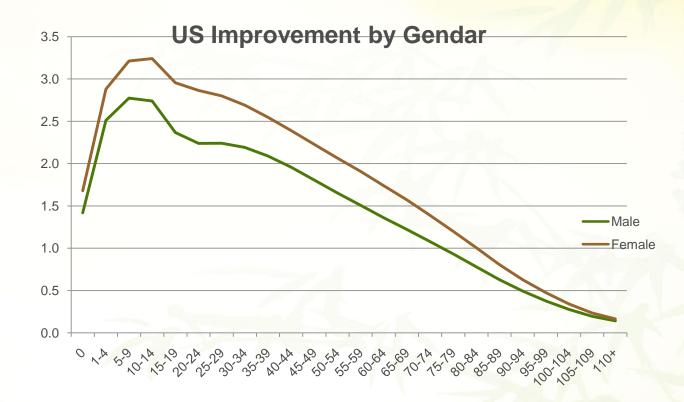
TAIPEI TAIV

Result

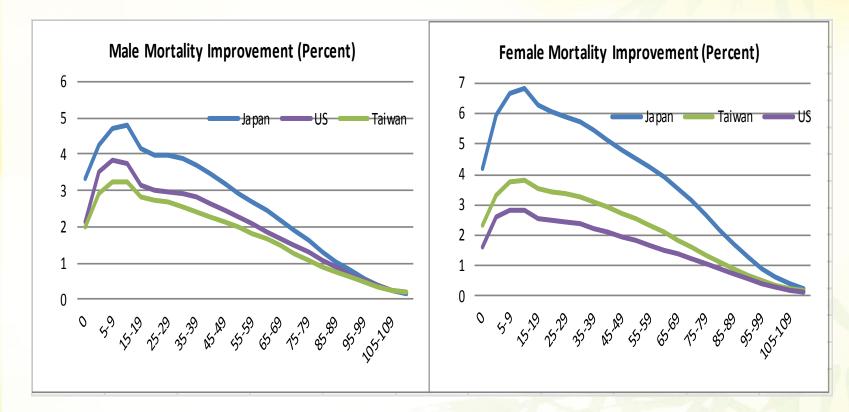
		Male		Female		
Age	Japan	laiwan	US	Japan	laiwan	US
5-9	4.70	3.26	3.85	6.64	3.77	2.85
20-24	4.00	2.74	2.99	6.04	3.42	2.50
30-34	3.89	2.57	2.93	5.72	3.24	2.36
40-44	3.45	2.29	2.65	5.15	2.91	2.09
50-54	2.93	1.99	2.27	4.51	2.52	1.81
70-74	1.91	1.27	1.49	<mark>3.14</mark>	1.60	1.24
80-84	1.32	0.91	1.08	2.18	1.12	0.91

2014 EAAC TAIPEI TAIWAN

Result



Comparison by Region:



Result

TAIPEI TAI

Conclusion

- Lee-Carter Method modeled the uncertainty of the reduction factor while other methods didn't;
- 2. The reduction factor is vary by age and sex;
- 3. The reduction factor is also vary by projection year;
- The reduction factor vary by region;

